
Secure Your Software
Delivery from Dev to Prod

CIAO Torino

Abdel Sghiouar
Senior Cloud Developer Advocate @Google
Kubernetes Podcast co-host
Twitter: @boredabdel

Software Supply
Chain Security

Why it matters

Growing number of attacks against Software

Supply Chain

● SolarWinds supply chain attack impacted
18,000 customers

● Log4j vulnerability affected millions of Java
applications that “set the Internet on fire”.

● Next-gen Supply chain attacks surge 430%
according to Sonatype

● Security vendor FireEye red team tools stolen
in cyber attacks

Case in Point: Coop Sverige

Kaseya

Stores closed for >24h500

IT CompanyCoop

How software

 is built today

It looks simple

Source Build Package Run

Dependencies

It's not

Source Build Package Run

Dependencies

Software supply chain

Attack vectors

Source Build Package Run

Dependency

Inject bad
code

Compromise
source control

Build from
modified

source

Compromise
build system

Compromised/
vulnerable

dependency

Bypass CI/CD,
inject bad

artifact

Compromise
package

repo/signing

Use compromised
package

Deploy

Compromise Deploy
Process

Deploy
compromised

image

Vulnerability
discovered

post-deployment

Now what ?

Zero-trust and shift-left

Establish Trust Verify Trust Maintain Trust

Develop Supply Build Deploy Run

Goal

Software
Lifecycle
Stage

Sigstore.dev

Sigstore.dev

Sigstore
components

Software Supply Chain (Sigstore edition)

What is SLSA?
It’s a security framework, a check-list of standards and controls to prevent tampering, improve integrity,
and secure packages and infrastructure in your projects, businesses or enterprises. It’s how you get from
safe enough to being as resilient as possible, at any link in the chain.

How does SLSA help?

● Define what does good look like

● Provide a framework for assessing existing

software development lifecycle

● Provide a framework for continuous

improvement

● Shift security to the left

● Enforce provenance of the build

● Enable end-to-end supply chain trust

● Enable software development observability

You fav OSS projects are dancing SLSA

A software bill of materials often captures:

● Supplier name

● Component name and version

● Other unique identifiers

● Dependency relationships

● Author of the SBOM data

● Timestamp

SBOMs come in two formats:

● CycloneDX

● SPDX

SBOM: Software Bill of Materials

cisa.gov/sbom

SLSA and Software Bill of Materials (SBOM)

● SLSA and SBOM are complementary

● SLSA can make it easier to generate SBOMs

● Major SLSA principle - generate tamper-proof provenance data
○ Who performed the release process for an artifact
○ Materials used in production
○ Whether the artifact was protected from tampering

● SBOMs hinge on accuracy, completeness, and trust
○ Having SLSA provenance for an artifact improves the quality and

integrity of its SBOM.

+

Demo

Software Delivery Shield

Introducing

Software Delivery Shield - Goals

Best practices Time tested Google best practices inside

Holistic
Provide holistic product solution encompassing
software development lifecycle, dependencies and
runtimes

Modular Incremental adoption pathway

Software Delivery Shield

Policy

Develop Supply CI/CD Runtime

Fully managed, end-to-end software supply chain security solution

Software Delivery Shield

Fully managed development
environments

 Cloud Workstations

● On-demand environments accessible anywhere

● Security policies

● Managed base images

● VPC and VPC-Service controls

Develop

Preview

Software Delivery Shield

Security assistance
in the IDE

 Cloud Code source protect

● Vulnerability detection as you code

● Support for scanning transitive dependencies

● Dependency license reporting

Develop

Preview

Software Delivery Shield

Improving security of artifacts
and dependencies

Supply

Preview

 Artifact Registry & Container Analysis

 Assured Open Source Software

● Artifact Registry - Maven virtual and remote repos

● Container Analysis - On-push Maven and Go container
scanning and standalone Maven package scanning

● Container Analysis - On-push SBOM dependency list
generation for containers

● Assured Open Source Software - 250+ Java and Python
packages

Software Delivery Shield

Enhance the security
of your CI pipelines

 Cloud Build

● SLSA Level 3 build support (slsa.dev)

● Build provenance for non-container Java (Maven) and
Python packages

● Security insights panel

CI/CD

Preview

http://slsa.dev

Software Delivery Shield

Security insights
at the runtime

 GKE security posture

 Cloud Run security insights

● GKE continuous runtime vulnerability and workload
configuration scanning

● Cloud Run insights into security target levels, service
vulnerabilities, and build provenance

Runtime

Preview

Software Delivery Shield

Trust based policy

 Binary Authorization

● Trust-based software development lifecycle policy

● Runtime policy enforcement

Policy

Software Delivery Shield

Demo Overview

Binary
authorization

Cloud Build

Triggered Scan with
Container Analysis

Image metadata

Artifact Registry
Automatic Scan with

Container Analysis

Kubernetes
Engine

Cloud Code

Google Cloud
Deploy

Continuous scanning with
Container Analysis

Admission control

Cloud
Workstations

Cloud
Operations

Thank you

Abdel Sghiouar
Senior Cloud Developer Advocate @Google
Kubernetes Podcast co-host
Twitter: @boredabdel

